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An analytical method is presented for vibration analysis of a rotating circular disk with 

distributed imperfections such as the nonuniform thickness, density, Young's modulus, Poisson' 

s ratio and the odd distribution of internal stresses. In this paper, the linear governing equation 

of  the disk is formulated, and then the relation between each imperfection and the split o f  

degenerate modes is derived. In the derivation, the distributed imperfection, which is a periodic 

function of angular position, is expanded as a Fourier  series. The derived simple relation 

suggests that the zeroth order imperfection causes the shift in the natural frequencies of all 

modes, whereas the 2m-th order harmonic imperfection results in the split of  the natural 

frequencies, with the equal magnitudes but with different signs, for a pair of original degenerate 

modes with m nodal diameters. 

Key W o r d s :  Imperfection, Split Modes, Degenerate System, Repeated Natural  Frequency, 

Rotating Disk 

N o m e n c l a t u r e  w 
a 

a : Inner-clamping radius of the disk p 

A : Disk area u 

b : Outer radius of the disk e 

D : Flexural rigidity of the disk 

E : Young's modulus of the disk 

h : Thickness of the disk 

m, n : Disk mode with m nodal diameters co 

and n nodal circles 

Nr, No, Nro Z Centrifugal stress resultants 

qm~(t) : Generalized coordinates 

r ,  0, z : Polar coordinates for the disk 

T : Kinetic energy 

u : Displacement in r direction 

v : Displacement in 0 direction 

V : Potential energy 
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6r, ~YO, fro 

: Disk transverse displacement 

: Imperfections of disk parameters 

: Mass per unit volume of  the disk 

Poisson's ratio of  the disk 

Dimensionless frequency shifting 

caused by imperfections 

: T h e  normal and shear centrifugal 

stresses 

: Natural frequency ( tad/s)  

Constant rotating speed of  the disk 

(rad/s)  

I. In troduct ion  

Rotating disks are important machine compo- 

nents widely used in many industrial applica- 

tions: circular saw blades, turbine rotors, brake 

systems, fans, flywheels, gears, grinding wheels, 

precision gyroscopes, computer storage devices, 

etc. The dynamics of rotating disks have attracted 

a lot of  research interest since the famous early 

researches (Kirchhoff, 1850; Lamb and South- 
well, 1921; Southwell, 1922). In this paper, our 

primary concern is the influence of  disk imperfec- 
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tions on the transverse vibration of  rotating disks. 

Unavoidably, disk imperfections more or less 

exist in all real disks. In some situations, they are 

introduced intentionally (Yu and Mote, 1987). 

For convenience in discussion, the disk imperfec- 

tions may be divided into three groups by the way 

they influence the energy elements (Tobias, 

1957): strain imperfections, kinetic imperfections, 

and both strain and kinetic imperfections. The 

strain imperfections affect the strain energy but 

leave the kinetic energy undisturbed, such as 

Young's modulus, Poisson's ratio, and initial 

stress distribution. The kinetic imperfections 

affect the kinetic energy but leave the strain 

energy undisturbed, such as a variation of  density. 

Dimensional irregularities normally produce both 

strain and kinetic imperfections. 

The disk imperfections can have some interest- 

ing and important implications for the dynamic 

response of  disks, such as introduction of addi- 

tional natural frequencies due to mode splitting, 

and formation of vibrational modes fixed to the 

disk due to preferential orientation of the split 

modes. To avoid or make use of these phenom- 

ena, it is necessary to understand their forming 

mechanism. The literature addressing the analysis 

of  split modes includes Zenneck (1899), Tobias 

and Arnold (1957), Tobias (1957), Williams and 

Tobias (1963), Williams (1966), Ewins (1969) 

and Efstathiades (1971). Recently, Stange and 

MacBain (1983) investigated experimentally the 

dual mode phenomena of a mistuned bladed disk 

by holographic interferometry. Honda, Matsuhisa 

and Sato (1985) found that the imperfection 

produced a much greater effect on the response 

near the resonance, but little effect on it off the 

resonance. Yu and Mote (1987) analyzed the 

effects of  the asymmetry through perturbation of  a 

variational formulation of the plate vibration 

problem. Rim and Lee (1993) obtained the 

modal parameters of  an outer-clamped annular 

disk under arbitrary in-plane (self-equilibrating) 

force by using perturbation and Galerkin  

methods, and Rim, Kim and Lee (1992) further 

developed an identification method to estimate 

the arbitrary in-plane  force along the clamped 

outer edge numerically and experimentally. Tseng 

and Wickert (1994a) discussed the vibration of 

an annular disk under the asymmetry of the 

bolted connections that are used to generate the 

"clamped" interior boundary by both the experi- 

mental and the theoretical means. Lee and Hong 

(1995) predicted the effect of a concentrated mass 

along a radial line on the free bending vibration 

of  a circular plate by Rayleigh-Ritz method. 

Nayfeh et al. (1976) and Parker and Mote (1996) 

used perturbation techniques to investigate the 

influence of  the deviation of the boundary of  a 

disk from annular or circular domain to the 

natural frequencies and mode shapes. Tseng and 

Wickert (1994b) investigated the effects of ec- 

centrical clamping on the natural frequencies and 

modes of a classical thin plate experimentally and 

through global discretization of  the Kample quo- 

tient. 

To the authors'  knowledge, no work has ad- 

dressed yet the relation between the split modes 

and the distributed imperfections such as the 

nonuniform thickness and density in a circular 

disk. In the present investigation, we derive the 

equations of motion for a rotating disk with 

typical distributed imperfections, then formulate 

the analytical relation between the distributed 

imperfections and the resulting split modes. The 

analytical method is developed under the assump- 

tion that the characteristics of the disk are not 

influenced by the imperfections except the natural 

frequencies and the locations of nodal diameters 

to investigate the mode splitting. 

2. Review of  Previous Works 

2.1 Solution of perfect disks 
The transverse displacement of a perfect flex- 

ible disk can be expressed, according to the 
expansion theorem, as 

o, t)= f: O) 
ra=On=O 

+ bm~wm.(r, O) ]qm.(t) 

2~2 ~,Rmn(l~mnr)cos m(O+Omno) qmn(t) ( l )  
m=Or/=O 

where 

w~,.(r, O)=Rmn(flm.r)cos mO 
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w ~ ( r ,  8) =Rm~(l~m,,r)sin mO 
(l~'~ = c o ~ p h / D )  

are the orthonormal modes (with m nodal diame- 

ters and n nodal circles) of the disk, qmn([;) are 

the corresponding t ime-dependent generalized 

coordinates, amn and bran are the constants deter- 

mining 0mno, and p, h and D --  12(1__~2) 

are the mass per unit volume, thickness and flex- 

ural rigidity of the perfect disk, respectively. 

As implied by Eq. (1), it has been well known 

that for each natural frequency COmn, there exist 

two corresponding orthogonal natural modes: the 

"cosine" and "sine" modes, except for m----0. In 

other words, those natural frequencies are 

repeated in the sense that their values become 

ident ical  The two orthogonal modes correspond- 

ing to a repeated natural frequency may be super- 

posed, leading to a resultant mode with the orien- 

tation angle Omn0 relative to the disk. For  a 

perfectly symmetric disk, whether uniform or not, 

theory indicates, and experiment verifies, that 

there will be no fixed preferential orientation 

(Omno) of the mode with respect to the disk 
(Rayleigh, 1945, pp. 363-366), unless the initial 

conditions in case of free vibration or the exciting 

force in case of forced vibration is fully specified. 

2.2 Imperfect disks 
If the axisymmetry of  the disk is disturbed by 

any imperfections, some repeated natural fre- 

quencies may split into pairs of two distinct 

natural fi'equencies cop and wq (cop< wq), which 

are frequently referred to as the split natural 

frequencies or modes. The two split modes have 

preferential orientations with respect to the disk 

irrespective of the presence of  the initial condi- 

tions and excitations. Zenneck (1899) has shown 

that the angular positions of the split modes 

coincide with those for which the natural fre- 

quency is either a minimum cob or a maximum coq 

(or derived from Rayleigh's principle).  Thus, by 

attaching; a small concentrated mass to a perfect 

disk, the mode wp will align itself with the mass 

eccentricity at its antinode, while the other mode 

wq will align the eccentricity at its node. 

F, . .  

Olaml~cl O 

Fig. 1 Analysis model. 

3. Analysis Model and Method 

The analysis model of the rotating disk is 

shown in Fig. 1. The disk boundaries shown are 

inner-clamped and outer-free, but the analysis 

here is also valid for other boundary conditions. 

The classical thin plate theory or Kirchhoff plate 

theory is used to describe the disk vibration. The 

major features and limitations of the disk model 

are." the thick plate effects of rotary inertia and 

shearing deformations are not included; the linear 

theory is suitable; the normals to the middle plane 

of the plate are assumed to remain normal to the 

deflected middle plane during vibration; the dissi- 

pation due to damping is not included; the in 

-p lane  stresses of  the disk due to centrifugal 

effects are included, but those due to thermal and 

residual stress effects are not included. 

In the following sections, the governing equa- 

tions for a disk with ideal, but typical distributed 

imperfections are formulated by Hamilton's prin- 

ciple and nondimensionalized. The distributed 

imperfections, which are periodic functions of 

angular position, are expanded as a Fourier  

series. And then the analytical relation between 

the imperfections and the split natural fi'equencies 

is derived and discussed. Finally, an example case 

is treated to illustrate the analytical development. 
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4. Energy Functions of Disk 
Vibration 

Now, we consider the imperfections associated 

with the Young's modulus (E) ,  the Poisson's 

ratio (u),  the plate's mass per unit volume (p),  

and the thickness of the disk (h). In addition, we 

also consider the imperfections associated with 

the stress resultants N~, No, and N~o given by 

f hl2 [" h/2 
Nr= h/2l~r dz, NO= lh/zaodz,.l_ 

fh/2 
Nro = J_ h/2 rrodz 

where r fro, fro are the normal and shear 
centrifugal stresses in the polar coordinates, 

respectively. 

The total kinetic energy due to transverse 

motion of the disk can be expressed as 

T (t) = l  f 2 z  f~ph~2rdrdO (2) 

where w ( r ,  O, t) is the disk t ransverse  
displacements. The kinetic energy due to rotation 

about its axis will be a constant for a constant 

rotating speed ~ ,  and it not included in this 

formulation since it will subsequently be canceled 

out when applying Hamilton's  principle. 

The potential energy of the disk includes three 

parts (Timoshenko and Gere, 1963). First, the 

energy l ~ d u e  to deformation of the middle plane 

of the disk by forces applied in this plane (centrif- 

ugal stresses) is 

A 

+ 2(1 + u) N~o] rdrdO 

where, A is the space area occupied by the disk. 

The stresses Nr,  No, and Nro are assumed to 
remain unchanged for small deflections, so the 

above strain energy remains constant during 

vibration, and thus we do not need to consider it 

for using Hamilton's principle. Second, the poten- 

tial energy due to pure bending is 

1 fan f b (  
� 8 8  L [ D ( A a w ) z - 2 v ( 1 - ~ )  

o ~ { k o ~ + l  o~ 
O H \ r  Or r =a0= /  

+2D(1-v)[OO~(r +~O-O)]a}rdrdO (3) 

where ~ 2  _ O z w  , 1 O w  , 1 O2w Third, w - ~ t T ~ U ~  r ~ O0 ~" 
the potential energy due to the addit ional stretch- 

ing of the middle plane in the presence of in 

-plane centrifugal forces is 

Vz(t) = Nr + No ro 0 
A 

1 f2~j~f~ri /~//3w\2+N~ 
+ 2Jo I_Nr\ c~r ] r2\  OO ] 

+ 2 Or 3 0  

where u and v represent the displacements in the 

r and 0 directions of any points in the middle 

plane of the disk during vibration, respectively. 

For  disk transverse vibration 

Then 

u = v = 0  

1 ['2;z ["b r { 0"142 ~2 No 
V a ( t ) : 2 J o  Ja [Nr \ Or / r 2 

3w a Nr~ 3w ]rdrdO (4) 
Or 00 ] 

Note that Nro=O when the stress distribution is 

axisymmetric. 

5. Equations of  Motion 

By applying Hamilton's principle, utilizing 

Eqs. ( 2 ) -  (4), we obtain 

OZw 2 2 1 0 p h ~ +  zl (Dzl w) - r  3r ( rNr OW3r 

1 8 { .  3 w \  2 3 [ .  3 w \  ~2 ~ k i v o ~ ) - V ~ V V r o ~ o  ) 
2 3 { .  3 w \  1 lOw . 1 Ozw\ O 2 
7 f f g \ ~ V r ~  OH 

1 OZw 3 2 
~ D ( 1 - u ) ]  r 2 3r 2 O02[D(1-u)]  

2(  a~w 1 0 w )  O ~ 
+ 7  OrO0 r 30 ~TgO [D(1-v) l  

1 O2w O 
r Or 2 o r [ D ( 1 - u ) ]  

2 (  02w 1 3 w ) ~ _ o [ D ( l _ v ) ~ = O  (5) 
7 r OrO0 7 O0 
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with associated boundary conditions. 

It will prove convenient to introduce the dimen- 

sionless variables: 

w*=w*/ho, ?.*=?./bo, 

t*= t / to, zQ*=Y2to, to: bo2~f poho/ Do 

and assume 

E=Eo( l+as ) ,  U = u o ( l + a , ) ,  p=po(l+ap) 
h=ho(l +ah), N~=N~o(l +au~) 

No:Noo(l + auo), N~o= P~176176 to 2 aNro 

so that, 

_ ~ 21,Jo 2 
D= Do(I + aD , Go=as • a a h ~ a ~  

D ( 1 - u )  = D o ( l -  uo) (1 + az~) 

aDlJ= aE 3ah-- l~o0  a. 

where ho, a0, b0, po, ... are the parameters 
associated with the perfect disk, and ah, a~, 

ab, ap, "" are the small quantities representing 

the imperfections which are functions of (?., 

0). From physical view, ah, aa, ab, ao, "'" 
are the dimensionless deviations of the disk 

parameters from the idealized perfect disk. Note 

that in the above and following formulas, we 

ignore the small quantities of order_>2. Then Eq. 

(5) can be rewritten, omitting asterisks for 

notational convenience, as 

a2w 2 + ao) A2w ] (1 + a,,+ ah) ~ ) : -  + A [(1 

1 3 [ ( l q_aNr )  ?.Nro~-r] 
-r Or 

1 ~-0[ (1 +aNo)Noo~o ] ?.2 

2 3 [ 3w \ 2 3 / 0w 

,. , l / Ow , 10Zw\OZaD~ 

1 32W (~2aD~ 
- ( 1 - U O )  r ~ 3r 2 302 

~ (  3~w 1 3w 32a~ 
+ (1 -uo )  3tO0 r 30 3r~O 

1 32w da~ 
-(1-Uo) r Or  ~ Or 

2 (  32w 1 3w ) Oa~ 
-- (i- . o ) ~  3?.80 7 30 - ~ - - - 0  (6) 

6. Mode Splitting Caused 
by Imperfections 

In this work, we do not include the boundary 

imperfections in the analysis due to mathematical 

difficulties. We assume a solution of the form 

W~,nq~n (t) =Rmn ( r )  cos re(O-- &)cos w~(t-- h) 
8 8 W~.~qm~(t) 

= R , . n ( r ) s i n  m ( 0 - -  &)cos  co2(t--t2) (7a, b) 

and 

wl 2= (1 + e:) Wo 2 
(8) 

(/)2 2 =  (1 + e2) Wo 2 

where w0 is the repeated natural frequency of the 

corresponding perfect disk, the small quantities e~ 

and e2 are the constant frequency shifting caused 

by imperfections, and 0: and 02 are the preferen- 

tial orientation angles of the split modes. Wmno = 
Rm~ ( r )  (a.,~o cos mO + bm~o sin wot) is the corre- 
sponding solution of the perfect disk. The orienta- 

tion angles 0~ and 02 will be determined accord- 

ing to the fact that they make the split natural 

frequencies wa and o)2 either a minimum or a 

maximum (see discussion in Sec. 2. 2). 

Substituting Eq. (7a) into Eq. (6), multiplying 

by wCn:Rmn(r) cos re(O--01), integrating over 
disk area, and deleting small quantities of order 

> 2, we obtain 

f2JZ fb[--- ( e 1 -~- ap~- ah) (.Oo2~b, Cn-F ZJ2( aoz~2 0)Cn) 

1 3 { . ,  3 w ~ \  1 3 [ .T O w ~ , \  
-Y ~ - t  aN?.JV r O ~ - )  -- 7 ~ - t  aNoJVo0~---) 

2 O { 3w~.k 2 3 [ Ow~.\ 
7 ~-F-t,a~"r~176 

, 1 [Sw~. , 1 32w~. 82a~. 
- ( l -  U 0 ) r k ~ - ~  r ~0" 3 r  ~ 

1 2 c 3 Wren OZao~ 
- ( 1 -  Uo) ?.2 3?.2 302 

2 ( 32w~. 1 3w~.) 32ao~ 
+ (1 - -u0 )~z .  8r80 r 80 f ~ 

z c , 2 [ OZwC. 
-(1-U0) r Or 2 Or  

r ~ )O-O-J wm"rdrdO=O (9) 

where the imperfection function can be: expanded 

in Fourier  series as 
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a(r,  O) = a o ( r )  + ~ a .  ( r )  ( A .  cos nO 
rt=l 

+ B .  sin nO) (10) 

6.1 Imperfection in density 
By substituting the expanded form of density 

imperfection ~ , ( r ,  0) into Eq. (9), we obtain 

- f [zel + xaoo(r) +~Ap2m COS 2mOlaa~ 

§ s in  2mO,~ , zm( I ' )  ] q)oZR~mn ( r )  ~ d r  = 0  

or  

where, 

Z/eo~ (11) 
~ = ~'~o 2 

f ba, o (r) (r) rdr 
epo = f bR~. ( rrdr ( 1 2) 

da 

zle.~ = (Ao2m cos 2mO~ + Bp2~ sin 2 toO1). 

f ba~ (r) (r) rdr R~. 
(13) b 2 

f Rmn ( r )  r d r  

Similarly, we obtain 

e2 = epo d- ~eo2 ( 1 4) 
2 

where ,dem has the same form as z/e~ except that 

0~ be replaced by 02. The preferential angles 01 

and 02 are determined from 

d~ep~ ~e ,o2  ^ (15) dO~ 0, and ~ = o  

Since except 01 and 02, Ae;~, and Aeo2 are com- 
pletely the same, we have 

0~= 02= 0* (16) 

so that 

Z/eo~ = ,alSo2 = z/co (17) 

and 

e2-- el = Z/ep 

6.2 Imperfections in s tresses  
By substituting the expanded form of stress 

imperfections au~(r, 0),  aNo(r, 0),  aNro(r, 
0) into Eq. (9), we obtain 

b 2 ~rO 1 
f { - zrel COo Rmn-~-~-[(~rO + ~  (ANtra cos2m 01 

Bsr2m sin 2mOD aNr~m)rNroR;,. I + 

NOOr 2 [ 1 --  7C~Wl 2 -- OLNOO-[-~(ANo2m COS 2rnO1 

+ Buo2~ sin 2mOD aNo2m]R,..- m:r . 
3 ?. 

(Auro2m sin 2mO~ 

-- Buro2m COS 2 r n O ~ ) ~ R ~ }  R~.rdr=O 

Similarly, we have 

El : ~N0 2 

Z/eN 
~2= eN0-~ 2 

01 = 02 = 0* 

where 

- f b [  l O ( [ ~  2 Noo ,~ ] ~ , - m --~-Ctuool~m.jl%.rar 

fbR , rdr 
Z/Eu-----(ANr2m COS 2toO* +Bur2m s in  2m0*) �9 

b o 
fa ~ - [  raur2mNroRmn] Rmndr 

cog f bR2m. rdr 

+ rn z (Auo2m Cos 2 toO* + BNO2m sin 2 toO*)" 
b f NOOD2 ~/. 

Ja aNO2m~- l~mn . .  

f~ 2 2 (.DO mn rdr 

+2rn(Auro2m sin 2toO*-Buro2m cos 2m0*) �9 

f ba'No2mRZmndr 

cog f bR~. rdr 

6.3 Imperfection in Young's modulus E 
(a'D = O~E, O'D~ = at)  

By substituting the expanded form of  Young's 
modulus imperfection at (r ,  0) into Eq. (9), we 
obtain 

7~ 
+~-(AE2~ cos 2mO~+BE2m sin 2rnOD. 

Z/2 2 , 2~'m 2 , ~  
2 (az2~Z/~R~) ~- r ~ - - ~  cos 2m0~ 
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+ Br2~ sin 2mOO ae2,~A~R,o 
t 2 tt 1 ,  tt �9 ( r R m , -  m Rm,) aEo+ R~,aEo 

- (1 -,Vo) n 1,2 

- ( 1 - v o )  (A~2m cos 2mO~ 

+ Be2m sin 2 mO,) ~ [ ~  (1,Rmn - mZ Rmn) a/2~ 

�9 2 R ~ n  , 2 1 ,  ~, 
- -  4 m - ~ - ~ t ~ E 2 m  --~Tk ~ ' l  ~ ~1,1x~ra.  - -  l ~ m . )  OIPE2ta 

Rm~ , 2 1 , 
+ r aE2~,+4m ~ ( r R m . - R m . ) "  

a'~2m] } R ~ . r d r = O  

where 

de 32W, 1 3W m 2 
, w = ~ - - ~  r Or r ~ 

A2 321.+ ' . 1 3w 5m 2 
w = ~ - - ~  r Or r 2 

We have 

Z/ee 
E2:= ~E~ 2 

01:= & =  0* 

where 

K~ 

wg fbg2 1,at 
K 

A ~  = c o j b R L  rdr  
Ja 

K l =  fab[A21(aEoA2Rmn) - ( 1 -  vo) " 

(1,R'mn - m2 Rmn) Otto+ 1,Rm, a'~O ] Rm.1,d1, 
- -  I" 2 J 

K =  (AExm COS 2 m 0 " +  BE2m sin 2m0")  �9 

f [  m2 b 2 4 2 
-- (A~ ( a~zmA1Rm.) -~z~-aEzmA1Rmn 1. 

+ ( 1 -  Vo) [ ~  (1,Rmn--mZRmn) a~2m 

Rgn . Rmn , _ 4 m 2 1 .  - -4m 2 r2 aE2m-l-~-~E2m 
( rR~,. - Rm.) a'E2m 

+ 4 m 2 ~ ( r R m .  - R~.)aE2~]} Rm.rdr  

For  a~ and ah, it is not difficult to get the similar 

results. 

Fig. 2 A circular disk with mass attached. 

7.  A n  E x a m p l e :  A C i r c u l a r  D i s k  w i t h  a 

M a s s  A t t a c h e d  o n  a R a d i u s  

Consider vibration of a circular disk with a 

local imperfection in the form of a distributed 

mass along a radial line as shown in Fig;. 2. Then, 

we have the expression 

p =  po(l + ap) 
2M~ 

ap = pob2(r162 [ H ( 0 - r 1 6 2  

where Ma is the attached mass which is assumed 

to be small compared with that of the disk, and 

H ( 0 )  is the Heaviside unit step function. The 

Fourier  series expansion of ap can be written as 

ap(O) = a o +  ~. ( A ,  cos n O + B ,  sin nO) 
n = l  

where 

1 2Ma f 2 .  
n ~ = 2 z  ,oob~ ( r  r  [ H ( 0 - r  

- H ( O -  r  

2 2M~ f o Z ~ [ H ( 0 _  r A ~ =  2z  pob2 ( r162  

- H ( 0 - r  �9 cos nOdO 
2Ma (sin nr 

:- 7gpob 2 ( (92 -- (91) n 

2 2Ma ff=[H(O-r 
B = =  2z  pob2((g2-r 

- H ( 0 -  Cz) ] " s in nOdO 
2Ma cos n r  nr 

- ~pob~(r162  n 

(18) 
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The origin of  the polar coordinates can be chosen 

arbitrarily, hence without loss of generality, we 

consider the mass along 0 = 0  line in polar coor- 

dinates. In the limiting case where ~b2 approaches 

~bl, we have the asymptotic behavior, since ~b0= 

( ~ 1 + ~ 2 ) / 2 = 0 ,  given by 

2Ma and B n = 0  (19) 
A n -  7cpob 2 , 

Inserting Eqs. (18) and (19), and a n = l  into Eqs. 

(1 l) and (13), and utilizing Eq. (16), we obtain 

M~ 
eo0 :  7Cp0 b 2 

z/eo= 2pM00/~2 cos 2 t oO*  

From Eq. (15), we obtain 

0 " = 0  

then 

2Ma and E2=0 
el = 7cpob 2 , 

Using Eq. (8), we have 

W 1 2 = ( l - - ~ W 0 2  
\ 7rpoO / (20) 

(/)22 = (2)02 

The same problem was solved by Lee and Hong 

(1995) using Rayleigh-Ritz  method and their 

results were 

0)12= (1 + ~ - 1 0 ) 0 2  ~ (1 - - ~ 0 ) 0 2  
\ 7CpoO I \ 7(poO / 

(.022 = 0)02 

which are identical to Eq. (20). Note that Eq. 

(20) holds for all modes with nonzero nodal 

diameters. 

Figure 3 shows the typical mode shapes with 

Ol Ol < 0 O.32 

split modal frequencies. The lines in the figure 

show the nodal diameters of the split modes, and 

the hatched area represent the attached mass. 

From the theoretical results in Sec. 6 and the 

example above, one sees that the zeroth order 

imperfection a o ( r )  will cause the shift in natural 

frequencies of all modes, but it does not cause the 

split of degenerate modes. The 2m-th harmonic 

component Ap2m COS 2 m O + B o 2 m  sin 2 m O  of the 
distributed imperfections will cause the split, with 

the equal magnitudes but with different signs, of 

the natural modes with m nodal diameters. The 

preferential angles for a pair of split modes are of 

the same values. 

8. D i scuss ion  and Conclus ions  

In this work, we derived the analytical relation 

between the distributed imperfections and the 

split modes and a simple rule is obtained for 

predicting the split modes. A degenerate mode 

with m(4-0)  nodal diameters in the perfect disk 

split into a pair of modes with slightly different 

natural frequencies if there exists the 2m-th order 

harmonic component in the disk parameters. 

Similar behaviors have been identified for bladed 

disks (Ewins, 1969), circular saw blades with 

radial slots (Yu and Mote, 1987), bolted plates 

(Tseng and Wickert, 1994a), nearly annular or 

circular plates (Nayfeh, 1976; Parker and Mote, 

1996), and eccentrically clamped annular plate 

(Tseng and Wickert, 1994b). 

The values of the natural frequencies and the 

eigenfunctions of the imperfect disk are deter- 

mined from the distribution of  the imperfections. 

The zeroth order imperfection ( a o ( r )  in the 

Fourier series) causes the shift in the natural 

frequencies of all modes, but not splitting. Where- 

as the 2m-th order harmonic imperfection results 

in the split of the natural frequencies, with the 

equal magnitudes but with different signs, for a 

pair of original degenerate modes with m nodal 

diameters. The preferential angles for a pair of 
split modes are of the same values. 

Fig. 3 Split mode configurations for (2, 0) mode. 
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